## Preprint (astro-ph/0607597)

Authors: ** Dean E. McLaughlin, Jay Anderson, Georges Meylan, Karl Gebhardt, Carlton Pryor, Dante Minniti, Sterl Phinney**

**“HST Proper Motions and Stellar Dynamics in the Core of the Globular Cluster 47 Tucanae”**

*We have used HST imaging of the central regions (R<100 arcsec, about 5 core radii) of the globular cluster 47 Tucanae to derive proper motions and U- and V-band magnitudes for 14,366 cluster members. We also present a catalogue of astrometry and F475W photometry for nearly 130,000 stars in a rather larger central area. These data are made available in their entirety, in the form of downloadable electronic tables. We use them first to obtain a new estimate for the position of the cluster center and to define the stellar density profile into essentially zero radius. We then search in particular for any very fast-moving stars, such as might be expected to result from very close stellar encounters. Likely fewer than 0.1% (and no more than about 0.3%) of stars have total speeds above the nominal central escape velocity in 47 Tuc, and at lower speeds the velocity distribution is described very well by a regular King model. Considerations of only the proper-motion velocity dispersion then lead to a number of results: (1) Blue stragglers in the core of 47 Tuc have a velocity dispersion lower than that of the cluster giants by a factor of sqrt{2}. (2) The velocity distribution in the cluster center is essentially isotropic, as expected. (3) Using a sample of radial velocities for stars in the core, we estimate the distance to 47 Tuc: D = 4.0 +/- 0.35 kpc. And (4) we infer a 1-sigma upper limit of M<1000-1500 solar masses for any central, intermediate-mass black hole. We can neither confirm nor refute the hypothesis that 47 Tuc might lie on an extension of the M-sigma relation observed for supermassive black holes in galaxy bulges. [Abridged]*

Advertisements